Answer:
Mass = 1.33 g
Explanation:
Given data:
Mass of argon required = ?
Volume of bulb = 0.745 L
Temperature and pressure = standard
Solution:
We will calculate the number of moles of argon first.
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
By putting values,
1 atm ×0.745 L = n × 0.0821 atm.L/mol.K× 273.15 K
0.745 atm. L = n × 22.43 atm.L/mol
n = 0.745 atm. L / 22.43 atm.L/mol
n = 0.0332 mol
Mass of argon:
Mass = number of moles × molar mass
Mass = 0.0332 mol × 39.95 g/mol
Mass = 1.33 g
<span>The characteristics of a wave are given certain names to describe them, and this helps scientists to accurately describe any given wave. The characteristic known as frequency describes the number of waves that pass a point, and it is measured in waves per second, or Hertz, which is given the symbol Hz, but can also be described using the inverse of the SI unit for second, s^-1.</span>
The question is incomplete, the complete question is;
One tank of goldfish is feed the normal amount which is once a day, a second tank is fed twice a day, and a third tank is fed four times a day during a 6 week study. The fishes' body fat is recorded daily.
Independent Variable-
Dependent Variable-
Constants
Control Group-
Answer:
A) The amount of food the gold fish receives
B) Body fat of the gold fish
C) -Type of fish used in the study (gold fish)
Time period within which the fishes were fed (Six week period)
Shape and size of tank
D) group of gold fish fed the normal amount
Explanation:
The purpose of the study is to determined the impact of amount of feed on the body fat of gold fish. Hence, the amount of feed is the independent variable while the body fat of the feed is the dependent variable.
The control group receives the normal amount of feed (once a day). The fishes are all gold fish, fed within a six week period. All the tanks were of the same shape and size. These are the constants in the study.
I suck at chemistry but i have a friend that can help