Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Answer: Option (C) is the correct answer.
Explanation:
As we know that metals are able to conduct electricity so, when a negatively charges rod is kept closer to the left sphere then electrons will enter the sphere.
Since, like charges repel each other. Hence, some of the negative changes from the rod will repel the negative charges of left sphere.
As both left and right spheres are touching each other so, the electrons will move towards the right sphere. As a result, there will be too many electrons (negative charge) present on the right sphere and very less electrons present in the left sphere.
Thus, we can conclude that the statement right sphere is negatively charged, another is charged positively, is true.
Answer:
1.40 m/s^2
Explanation:
Given data
Velocity= 17.4 m/s
time= 12.4 seconds
We want to find the acceleration of the rock
We know that
acceleration = velocity/time
Substitute
acceleration= 17.4/12.4
acceleration=1.40 m/s^2
Hence the acceleration is 1.40 m/s^2