The correct answer is 740
Answer:
4 s
Explanation:
u = 19.6 m/s, g = 9.8 m /s^2
Let the time taken to reach the maximum height is t.
Use first equation of motion.
v = u + at
At maximum height, final velocity v is zero.
0 = 19.6 - 9.8 x t
t = 19.6 / 9.8 = 2 s
As the air resistance be negligible, is time taken to reach the ground is also 2 sec.
So, total time taken be the ball to reach at original point = 2 + 2 = 4 s
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Answer:
Explanation:
Momentum change for either skater is mΔv = 75.0(5.0) = 375 kg•m/s
As a change in momentum is equal to an impulse
375 = FΔt
F = 375/0.100 = 3750 N
As 3750 N < 4500 N no bones are broken.
Answer:
The force is 
Explanation:
Given that,
Mass of car = 64 kg
Suppose, a 1400-kg car that stops from 34 km/h on a distance of 1.7 cm.
We need to calculate the acceleration
Using formula of acceleration

Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value into the formula



We need to calculate the force
Using formula of force



Negative sign shows the direction of the force is in the direction opposite to the initial velocity.
Hence, The force is 