Answer:
7.98 m
Explanation:
In the given question,
distance above surface= 2 m
Distance penny from person = 8 m
Since the swimming pool is filled with water and atmosphere has air therefore the refractive index phenomenon will occur.
The refractive index of water: air is 4/3 (1.33).
Using the formula, 4/3 = real depth, apparent depth
real depth= 4/3 x apparent depth
Now, calculating apparent depth = 8 - 2
= 6 m
therefore, real depth = 4/3 x apparent depth
= 1.33 x 6
= 7.98
thus, 7.98 m is the real depth of water.
According to the article "Nuclear shapes" by Renee Lucas the nucleus's shape is mainly modified by vibrational and rotational features happening within the cell. According to the article if i read correctly "near closed shells spherical shapes prevail, while between closed shells the large number of valence nucleons in orbit with large particle angular momentum leads to nuclei with large deformations leading them to not only maintain its shape but also alloying it to work.
Answer:
The Moon's distance from the Earth varies during its orbit
Explanation:
The correct statement is ,The Moon's distance from the Earth varies during its orbit.
Important point regarding moon:
1 .Moon is a natural satellite of the earth.
2. Moon is the fifth largest satellite in solar system.
3.Second densest satellite in solar system.
4.Moon rotates about earth.
5.Moon is an astronomical body .
Answer: Gravity
Explanation: Gravity is pulling down on the ball, making it stay on the floor
I think your question should be:
An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is

What is the rms value of (a) the electric field and
(b) the magnetic field in the electromagnetic wave emitted by the laser
Answer:
a) 
b) 
Explanation:
To find the RMS value of the electric field, let's use the formula:

Where
;
;

Therefore
![E_r_m_s = sqrt*{(1.239*10^9W/m^2) / [(3.00*10^8m/s)*(8.85*10^-^1^2C^2/N.m^2)]}](https://tex.z-dn.net/?f=%20E_r_m_s%20%3D%20sqrt%2A%7B%281.239%2A10%5E9W%2Fm%5E2%29%20%2F%20%5B%283.00%2A10%5E8m%2Fs%29%2A%288.85%2A10%5E-%5E1%5E2C%5E2%2FN.m%5E2%29%5D%7D%20)

b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:
;
;
