Answer:
1.4 moles/ 2.0 L= 0.7 M
Explanation: Molarity= moles of solute/ Liters of solution
therefore just plug the numbers in and you'll find the molarity to equal. 0.7
Answer:
Covalent
Explanation:
Covalent is the sharing of electrons and Ionic is transferring of electrons.
Explanation:
The given data is as follows.
Volume of lake =
= 
Concentration of lake = 5.6 mg/l
Total amount of pollutant present in lake = 
=
mg
=
kg
Flow rate of river is 50 
Volume of water in 1 day = 
=
liter
Concentration of river is calculated as 5.6 mg/l. Total amount of pollutants present in the lake are
or 
Flow rate of sewage = 
Volume of sewage water in 1 day =
liter
Concentration of sewage = 300 mg/L
Total amount of pollutants =
or 
Therefore, total concentration of lake after 1 day = 
= 6.8078 mg/l
= 0.2 per day
= 6.8078
Hence,
= 
=
= 1.234 mg/l
Hence, the remaining concentration = (6.8078 - 1.234) mg/l
= 5.6 mg/l
Thus, we can conclude that concentration leaving the lake one day after the pollutant is added is 5.6 mg/l.
The chemical compound's empirical formula is NS.
The chemical compound's molecular formula is N4S4.
<h3>What does a chemical empirical formula look like?</h3>
- The empirical formula of a compound that gives the proportion (ratios) of the elements in the complex but not the precise number or arrangement of atoms is known as an empirical formula.
- This would be the compound's element to whole number ratio with the lowest value.
<h3>What sort of empirical formula would that be?</h3>
- The chemical structure of glucose is C6H12O6. Every mole of carbon and oxygen is accompanied by two moles of hydrogen.
- Glucose has the empirical formula CH2O.
- Ribose has the chemical formula C5H10O5, which can be simplified to the empirical formula CH2O.
learn more about empirical formula here
brainly.com/question/1603500
#SPJ4
the question you are looking for is
A compound containing only sulfur and nitrogen is 69.6% S by mass; the molar mass is 184 g/mol. What are the empirical and molecular formulas of the compound?
Explanation:
atom changes from a ground state to an excited state by taking on energy from its surroundings in a process called absorption. The electron absorbs the energy and jumps to a higher energy level. In the reverse process, emission, the electron returns to the ground state by releasing the extra energy it absorbed