The rate equation is given as:
k = A e^(- Ea / RT)
Dividing state 1 and state 2:
k1/k2 = e^(- Ea / RT1) / e^(- Ea / RT2)
k1/k2 = e^[- Ea / RT1 - (- Ea / RT2)]
k1/k2 = e^[- Ea / RT1 + Ea / RT2)]
Taking the ln of both sides:
ln (k1/k2) = - Ea / RT1 + Ea / RT2
ln (k1/k2) = - Ea / R (1/T1 - 1/T2)
Since k2 = 4k1, therefore k1/k2 = ¼
ln (1/4) = [- (56,000 J/mol) / (8.314 J / mol K)] (1/273
K – 1/ T2)
2.058 x 10^-4 = 1/273 – 1/T2
T2 = 289.25 K
Reptiles arose during the Carboniferous period. Therefore making the answer Reptiles
0.2 m/s! keep in mind, speed= distance divided by time :D
You must verify that the number of atoms of each type is equal on both sides of the chemical equation: same number of C, same number of H and same number of O on both sides.
<span>A. C4H6 + 5.5O2 ---> 4CO2 + 3H2O
element reactant side product side
C 4 4
H 6 3*2 = 6
O 5.5 * 2 = 11 4*2 + 3 = 11
Then, this equation is balanced.
</span>Do the same with the other equations if you want to verify that they are not balanced.
Answer: option A.