1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
4 years ago
9

A marathon runner completes a 42.238 km course in 2 h, 31 min, and 46 s . There is an uncertainty of 29 m in the distance run an

d an uncertainty of 3 s in the elapsed time.
What is the percent uncertainty in the average speed?
Physics
1 answer:
icang [17]4 years ago
3 0

Answer:

The percentage uncertainty in the average speed is 0.10% (2 sig. fig.)

Explanation:

Consider the formula for average speed \bar{v}.

\displaystyle \bar{v} = \frac{s}{t},

where

  • s is the total distance, and
  • t is the time taken.

The percentage uncertainty of a fraction is the sum of percentage uncertainties in

  • the numerator, and
  • the denominator.

What are the percentage uncertainties in s and t in this question?

The unit of the absolute uncertainty in s is meters. Thus, convert the unit of s to meters:

s = \rm 42.238\;km = 42.238\times 10^{3}\;m.

\begin{aligned}\displaystyle \text{Percentage Uncertainty in }s &= \frac{\text{Absolute Uncertainty in } s}{\text{Measured Value of }s}\times 100\% \\ &=\rm\frac{29\; m}{42.238\times 10^{3}\;m}\times 100\%\\ &= 0.0687\%\end{aligned}.

The unit of the absolute uncertainty in t is seconds. Convert the unit of t to seconds:

t = \rm 2\times 3600 + 31\times 60 + 46 = 9106\;s

Similarly,

\begin{aligned}\displaystyle \rm \text{Percentage Uncertainty in }t &= \frac{\text{Absolute Uncertainty in }t}{\text{Measured Value of }t}\times 100\% \\ &=\rm\frac{46\; s}{9106\;s}\times 100\%\\ &= 0.0329\%\end{aligned}.

The average speed \bar{v} here is a fraction of s and t. Both s and t come with uncertainty. The percentage uncertainty in \bar{v} will be the sum of percentage uncertainties in s and t. That is:

\text{Percentage Uncertainty in }\bar{v}\\=(\text{Percentage Uncertainty in } s) + (\text{Percentage Uncertainty in } t)\\ = 0.0687\% + 0.0329\%\\ = 0.010\%.

Generally, keep

  • two significant figures for percentage uncertainties that are less than 2%, and
  • one for those that are greater than 2%.

The percentage uncertainty in \bar{v} here is less than 2%. Thus, keep two significant figures. However, keep more significant figures than that in calculations to make sure that the final result is accurate.

You might be interested in
What is the 4th dimension? I have heard that it's time, it's a from of saying characteristic. I don't know I need help on this,
sashaice [31]

If you want to tell a friend about a fish you caught or a tree you cut down,
you're going to tell him WHERE you were ... its position in space, 3 numbers,
'x', 'y', and 'z' ... and also WHEN you were ... its position in time, one more
number. 

Dimensions are numbers used to describe the location of a point, and the
difference in location between two points.  With four numbers, you can exactly
describe the location of anything, and its distance from any other thing, in
space and time.


3 0
3 years ago
A 12.0-g bullet is fired horizontally into a 109-g wooden block that is initially at rest on a frictionless horizontal surface a
kykrilka [37]

Answer:

v₀ = 280.6 m / s

Explanation:

we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,

We write the mechanical energy when the shock has passed the bodies

   Em₀ = K = ½ (m + M) v²

We write the mechanical energy when the spring is in maximum compression

Em_{f} = K_{e} \\= \frac{1}{2} kx^2\\    Em_0 = Em_{f}

½ (m + M) v² = ½ k x²

Let's calculate the system speed

   v = √ [k x² / (m + M)]

   v = √[152 ×0.78² / (0.012 +0.109) ]

   v = 27.65 m / s

This is the speed of the bullet + Block system

Now let's use the moment to solve the shock

Before the crash

   p₀ = m v₀

After the crash

p_{f} = (m + M) v

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

 p_0 =  p_{f}

  m v₀ = (m + M) v

  v₀ = v (m + M) / m

let's calculate

v₀ = 27.83 (0.012 +0.109) /0.012

  v₀ = 280.6 m / s

4 0
3 years ago
What is the correct definition of refraction?
scoray [572]

i believe it's C but i'm not completely sure

5 0
4 years ago
The kinetic energy of a body of mass 15 kg is 30 joule. What is its momentum?
lys-0071 [83]

This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum.  So here they are:

Kinetic energy = (1/2) · (mass) · (speed²)

Momentum = (mass) · (speed)

So, now ... We know that

==> mass = 15 kg,  and

==> kinetic energy = 30 Joules

Take those pieces of info and pluggum into the formula for kinetic energy:

Kinetic energy = (1/2) · (mass) · (speed²)

30 Joules = (1/2) · (15 kg) · (speed²)

60 Joules = (15 kg) · (speed²)

4 m²/s² = speed²

Speed = 2 m/s

THAT's all you need !  Now you can find momentum:

Momentum = (mass) · (speed)

Momentum = (15 kg) · (2 m/s)

<em>Momentum = 30 kg·m/s</em>

<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum.  When I saw this, I wondered whether that's always true.  So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>

8 0
3 years ago
Radiation from the Sun The intensity of the radiation from the Sun measured on Earth is 1360 W/m2 and frequency is f = 60 MHz. T
Zina [86]

a) Total power output: 3.845\cdot 10^{26} W

b) The relative percentage change of power output is 1.67%

c) The intensity of the radiation on Mars is 540 W/m^2

Explanation:

a)

The intensity of electromagnetic radiation is given by

I=\frac{P}{A}

where

P is the power output

A is the surface area considered

In this problem, we have

I=1360 W/m^2 is the intensity of the solar radiation at the Earth

The area to be considered is area of a sphere of radius

r=1.5\cdot 10^{11} m (distance Earth-Sun)

Therefore

A=4\pi r^2 = 4 \pi (1.5\cdot 10^{11})^2=2.8\cdot 10^{23}m^2

And now, using the first equation, we can find the total power output of the Sun:

P=IA=(1360)(2.8\cdot 10^{23})=3.845\cdot 10^{26} W

b)

The energy of the solar radiation is directly proportional to its frequency, given the relationship

E=hf

where E is the energy, h is the Planck's constant, f is the frequency.

Also, the power output of the Sun is directly proportional to the energy,

P=\frac{E}{t}

where t is the time.

This means that the power output is proportional to the frequency:

P\propto f

Here the frequency increases by 1 MHz: the original frequency was

f_0 = 60 MHz

so the relative percentage change in frequency is

\frac{\Delta f}{f_0}\cdot 100 = \frac{1}{60}\cdot 100 =1.67\%

And therefore, the power also increases by 1.67 %.

c)

In this second  case, we have to calculate the new power output of the Sun:

P' = P + \frac{1.67}{100}P =1.167P=1.0167(3.845\cdot 10^{26})=3.910\cdot 10^{26} W

Now we want to calculate the intensity of the radiation measured on Mars. Mars is 60% farther from the Sun than the Earth, so its distance from the Sun is

r'=(1+0.60)r=1.60r=1.60(1.5\cdot 10^{11})=2.4\cdot 10^{11}m

Now we can find the radiation intensity with the equation

I=\frac{P}{A}

Where the area is

A=4\pi r'^2 = 4\pi(2.4\cdot 10^{11})^2=7.24\cdot 10^{23} m^2

And substituting,

I=\frac{3.910\cdot 10^{26}}{7.24\cdot 10^{23}}=540 W/m^2

Learn more about electromagnetic radiation:

brainly.com/question/9184100

brainly.com/question/12450147

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Give example of organisms that could NOT adapt/survive? (2004 Asian tsunami)
    8·1 answer
  • A ball is thrown vertically upward with a speed of 12.0 m/s. (<br> a. How high does it rise?
    10·1 answer
  • At an air show, Julia saw a fighter jet fly by. Three seconds later she heard the sonic boom of the sound barrier being broken.
    11·2 answers
  • Any winds, like the jet stream, occur because of _____.
    7·2 answers
  • Plz help with dis science
    5·1 answer
  • Jim began a 153-mile bicycle trip to build up stamina for a triathlon competition. Unfortunately, his bicycle chain broke, so he
    5·1 answer
  • When a substance goes directly from a gaseous state to a solid state as dry ice does
    5·2 answers
  • If used with godly wisdom, the earth has sufficient resources to sustain its human population.
    11·1 answer
  • 1. A body has a velocity of 72 km/hr. Find its value in m/s.
    14·1 answer
  • the diagram below shows the situation described in the problem. the focal length of the lens is labeled f; the scale on the opti
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!