Answer:
735 J/kg/C
Explanation:
Q = mcT
943 = (0.447)( c )(2.87)
1.28289c = 943
c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>
Answer:
c. about 1/10 as great.
Explanation:
While jumping form a certain height when we bend our knees upon reaching the ground such that the time taken to come to complete rest is increased by 10 times then the impact force gets reduced to one-tenth of the initial value when we would not do so.
This is in accordance with the Newton's second law of motion which states that the rate of change in velocity is directly proportional to the force applied on the body.
Mathematically:


since mass is constant

when 
then,


the body will experience the tenth part of the maximum force.
where:
represents the rate of change in dependent quantity with respect to time
momentum
mass of the person jumping
velocity of the body while hitting the ground.
Sorry I'm so late, but I just took this test and the answer is white (for people who didn't study well ;) )
Answer:
(a) A = 1 mm
(b) 
(c) ![a_{max}=606.4 m/s^{2}/tex]Explanation:Distance moved back and forth = 2 mm Frequency, f = 124 HzSo, amplitude is the half of the distance traveled back and forth. (a) So, amplitude, A = 1 mm(b) Angular frequency, ω = 2 π f = 2 x 3.14 x 124 = 778.72 rad/s The formula for the maximum speed is given by [tex]V_{max}=\omega \times A](https://tex.z-dn.net/?f=a_%7Bmax%7D%3D606.4%20m%2Fs%5E%7B2%7D%2Ftex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EDistance%20moved%20back%20and%20forth%20%3D%202%20mm%20%3C%2Fp%3E%3Cp%3EFrequency%2C%20f%20%3D%20124%20Hz%3C%2Fp%3E%3Cp%3ESo%2C%20amplitude%20is%20the%20half%20of%20the%20distance%20traveled%20back%20and%20forth.%20%3C%2Fp%3E%3Cp%3E%28a%29%20So%2C%3Cstrong%3E%20amplitude%2C%20A%20%3D%201%20mm%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%28b%29%20Angular%20frequency%2C%20%CF%89%20%3D%202%20%CF%80%20f%20%3D%202%20x%203.14%20x%20124%20%3D%20778.72%20rad%2Fs%20%3C%2Fp%3E%3Cp%3EThe%20formula%20for%20the%20maximum%20speed%20is%20given%20by%20%3C%2Fp%3E%3Cp%3E%5Btex%5DV_%7Bmax%7D%3D%5Comega%20%5Ctimes%20A)


(c) The formula for the maximum acceleration is given by


[tex]a_{max}=606.4 m/s^{2}/tex]