In the vertical direction, take up to be positive and down to be negative. Then the net <u>vertical</u> force would be
5120 N - 4050 N = 1070 N
(it's positive, so the net vertical force is pointing upward)
In the horizontal direction, take right to be positive and left to be negative. Then the net <u>horizontal</u> force would be
950 N - 1520 N = -570 N
(negative means the net horizontal force points to the left)
So the net force on the balloon is the vector
<em>F</em> = (1070 N) <em>i</em> + (-570 N) <em>j</em>
(where <em>i</em> and <em>j</em> are the unit vectors in the horizontal and vertical directions, respectively)
The magnitude of the net force on the balloon is the magnitude of this vector:
<em>F</em> = √((1070 N)² + (-570 N)²)
<em>F</em> ≈ 1212 N
Answer:
initial magnitude will be 9 N and direction will be to the right
Explanation:
force= 9N
mass m= 330 grams
acceleartion = a
from newtons 2nd law of motion we write

dP is the chage in momentum dt is time taken and F is the Force applied

this shows that the rate of change of momentum is 9 N
we also know that F= ma
putting values we get

a= 27.27 m/sec^2
The direction of acceleration will along the direction of force applied. So will be the direction of change momentum as in F=ma, mass is the scalar quantity and direction of force dictates the direction of motion. Hence, initial magnitude will be 9N and direction will be to the right
The air drag is a force that depends on the speed of an object relative to the wind. Under certain conditions, it can be modeled as:

Where b is a constant.
As a falling object reaches a speed so that its weight is cancelled out by the air drag, the object will reach a maximum velocity.
In a speed vs time gaph, the speed would approach the maximum speed like an asymptote.
On the other hand, since the object falls from rest, the initial speed on the graph must be zero.
Taking these considerations into account, the correct graph for the movement of an object that falls from rest if air drag is not ignored, is option B.
Answer:Although the nervous system is very complex, nervous tissue consists of just two basic types of nerve cells: neurons and glial cells Neurons are the structural and functional units of the nervous system They transmit electrical signals, called nerve impulses. Glial cells provide support for neurons.
Explanation: