The answer would be 2.8m height on earth takes
2.8=1/2*9.8*t^2 => <span>s = ut +1/2at^2 </span>
Explanation:
Work cannot be increased by using a machine of some kind.
The correct answer to the question is vertically downward i.e towards the centre of earth.
EXPLANATION:
As per the question, the box is pulled to the right.
Hence, the direction of the applied force is towards right.
We are asked to determine the direction of the gravitational force that acts on the body.
Before answering this question, first we gave to understand the gravitational force of earth.
Any body present on the surface of earth is attracted with the force of gravity of earth ( gravitational force ) towards its centre. It is equivalent to the weight of the body.
The force of gravity is always directed towards the centre of earth irrespective of the nature of applied force.
Hence, the direction of the gravitational force which acts on the box is vertically downward.
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency


