John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .
Unlike a longitudinal wave, a transverse wave moves about, perpendicular to the direction of propagation. The particles in a transverse wave do not travel along the direction of propagation, but only oscillate up and down on its equilibrium position. With this, the displacement can be determined by measuring (in the case of electronic waves, using an oscilloscope or spectrum analyzer) and setting the desired units to measure the wave in.
Yes, it is diffusion !
Diffusion is the process in which gas, through random movement of particles, tends to fill up the whole volume of the container in which it is placed. So a similar process would lead the smoke, which is in form of gas (or light particles), to fill in the whole room in which it is contained.
Answer:
-20N
Explanation:
The racquet ball will bounce back with the same force.
This is in compliance with newton's third law of motion:
"action and reaction are equal but opposite"
If the ball hits the wall with an action force of 20N, the reaction force will be -20N.
The negative indicates an oppositely directed force.