1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
3 years ago
15

Which of Newton’s Laws involves mass and acceleration? Question 1 options: 3rd 1st 2nd All of them

Physics
2 answers:
Oksana_A [137]3 years ago
7 0

Newton's second law states the following:

The change of movement is directly proportional to the force applied to the body and occurs in the direction where the force is applied.

In other words, we have:

F = ma

Where,

F: net force acting on the body

m: body mass (proportionality constant)

a: body acceleration

Answer:

Newton’s Law that involves mass and acceleration is:

2nd Law

Feliz [49]3 years ago
6 0
The answer would be Newton’s Second Law
You might be interested in
10 basic rules of badminton?​
saw5 [17]

Answer:

The 10 rules of badminton are as follows:

1. A game starts with a coin toss. Whoever wins the toss gets to decide whether they would serve or receive first OR what side of the court they want to be on. The side losing the toss shall then exercise the remaining choice.

2. At no time during the game should the player touch the net, with his racquet or his body.

3. The shuttlecock should not be carried on or come to rest on the racquet.

4. A player should not reach over the net to hit the shuttlecock.

5. A serve must carry cross court (diagonally) to be valid.

6. During the serve, a player should not touch any of the lines of the court, until the server strikes the shuttlecock. During the serve the shuttlecock should always be hit from below the waist.

7. A point is added to a player's score as and when he wins a rally.

8. A player wins a rally when he strikes the shuttlecock and it touches the floor of the opponent's side of the court or when the opponent commits a fault. The most common type of fault is when a player fails to hit the shuttlecock over the net or it lands outside the boundary of the court.

9. Each side can strike the shuttlecock only once before it passes over the net. Once hit, a player can't strike the shuttlecock in a new movement or shot.

10. The shuttlecock hitting the ceiling, is counted as a fault.

Explanation:

8 0
2 years ago
Read 2 more answers
A block of mass
Gennadij [26K]

(a) The work done by the applied force is 26.65 J.

(b) The work done by the normal force exerted by the table is 0.

(c) The work done by the force of gravity is 0.

(d) The work done by the net force on the block is 26.65 J.

<h3>Work done by the applied force</h3>

W = Fdcosθ

W = 14 x 2.1 x cos25

W = 26.65 J

<h3>Work done by the normal force</h3>

W = Fₙd

W = mg cosθ x d

W = (2.5 x 9.8) x cos(90) x 2.1

W = 0 J

<h3>Work done force of gravity</h3>

The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.

<h3> Work done by the net force on the block</h3>

∑W = 0 + 26.65 J = 26.65 J

Thus, the work done by the applied force is 26.65 J.

The work done by the normal force exerted by the table is 0.

The work done by the force of gravity is 0.

The work done by the net force on the block is 26.65 J.

Learn more about work done here: brainly.com/question/8119756

#SPJ1

6 0
1 year ago
what is the mechanical advantage of a crowbar when a worker uses 10N of force to pry open a window that has a resistance of 500N
Oksana_A [137]

Answer:

50

Explanation:

The mechanical advantage of a machine is given by

MA=\frac{F_{out}}{F_{in}}

where

F_{out} is the output force

F_{in} is the input force

For the crowbar in this problem,

F_{in}=10 N is the force in input applied by the worker

F_{out}=500 N is the force that the machine must apply in output to overcome the resistance of the window and to open it

Substituting into the equation, we find

MA=\frac{500}{10}=50

3 0
3 years ago
Read 2 more answers
A 45 N girl sits on a bench 0.6 meters off the ground. How much work is done on the bench?
ycow [4]

Answer: 27 joules

Explanation:

Work is done when force is applied on the bench over a distance. it is measured in joules.

Workdone = force x distance

= 45 N x 0.6 metres

= 27 joules

Thus, 27 joules of work is done on the bench.

6 0
3 years ago
Define energy and provide examples of potential and kinetic energy
In-s [12.5K]

Energy is the capacity for doing work..

Kinetic energy - Moving car

Potential energy - flowing water up the hill

6 0
2 years ago
Other questions:
  • A solid conducting sphere of radius R carries a charge Q. Calculate the electric-field energy density at a point a distance r fr
    7·1 answer
  • Northrop aircraft developed and built a deceleration sled to test the effects of the extreme forces on humans and equipment. In
    7·1 answer
  • Some hydrogen gas is enclosed within a chamber being held at 200^\ { C} with a volume of 0.025 \rm m^3. The chamber is fitted wi
    8·1 answer
  • How does the range change as the angle increases?
    7·1 answer
  • In which situation would a space probe most likely experience centripetal acceleration?
    14·1 answer
  • 1. If point Q is reflected across x = 1, what are the coordinates of its reflection image?
    12·2 answers
  • What part of the atom determines physical properties?
    7·1 answer
  • A 60-V potential different is applied across a parallel combination of a 10-ohm and 20-ohm resistor. What is the current in the
    6·2 answers
  • How much energy has 4×10^10m^3 of water collected in a reservoir at a hight of 100 m from the power house ?What kind of energy i
    15·1 answer
  • A roller coaster travels down a 120 m track in 12.5 seconds how fast does the roller coaster go
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!