C, The atomic mass. This could also cause certain elements (i.e. Uranium, Plutonium) to radioactively decay in process called nuclear fission.
Answer:
b. Beta emission, beta emission
Explanation:
A factor to consider when deciding whether a particular nuclide will undergo this or that type of radioactive decay is to consider its neutron:proton ratio (N/P).
Now let us look at the N/P ratio of each atom;
For B-13, there are 8 neutrons and five protons N/P ratio = 8/5 = 1.6
For Au-188 there are 109 neutrons and 79 protons N/P ratio = 109/79=1.4
For B-13, the N/P ratio lies beyond the belt of stability hence it undergoes beta emission to decrease its N/P ratio.
For Au-188, its N/P ratio also lies above the belt of stability which is 1:1 hence it also undergoes beta emission in order to attain a lower N/P ratio.
The mole fraction of acetone (C₃H₆O) is 0.333
<h3>Data obtained from the question </h3>
- Mole of C₃H₆O = 0.1 mole
- Mole of CHCl₃ = 0.2 mole
- Mole fraction of C₃H₆O =?
<h3>How to determine the mole fraction </h3>
Mole fraction of a substance can be obtained by using the following formula:
Mole fraction = mole / total mole
With the above formula, we can obtain the mole fraction of C₃H₆O as follow:
- Mole of C₃H₆O = 0.1 mole
- Mole of CHCl₃ = 0.2 mole
- Total mole = 0.1 + 0.2 = 0.3 mole
- Mole fraction of C₃H₆O =?
Mole fraction = mole / total mole
Mole fraction of C₃H₆O = 0.1 / 0.3
Mole fraction of C₃H₆O = 0.333
Learn more about mole fraction:
brainly.com/question/2769009
Answer:
For most of its active life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. At the end of a star's lifetime, its core becomes a stellar remnant : a white dwarf , a neutron star , or, if it is sufficiently massive, a black hole .
Explanation: