<u>5.6400 </u>is the mass of silver bromide that precipitates when 2.96 g of iron(iii) bromide is combined with excess silver nitrate.
<h3>
Difference between silver bromide and iron(iii) bromide</h3>
- Silver bromide (AgBr) is a soft, pale-yellow, water-insoluble salt well known (along with other silver halides) for its unusual sensitivity to light. This property has allowed silver halides to become the basis of modern photographic materials. AgBr is widely used in photographic films and is believed by some to have been used for making the Shroud of Turin. The salt can be found naturally as the mineral bromargyrite.
- Iron(III) bromide is the chemical compound with the formula FeBr3. Also known as ferric bromide, this red-brown odourless compound is used as a Lewis acid catalyst in the halogenation of aromatic compounds. It dissolves in water to give acidic solutions.
Learn more about Silver bromide
brainly.com/question/16958040
#SPJ4
Answer:
It uses fossils to help pinpoint the ages of rocks.
Explanation:
Radiocarbon dating can not be used to determine the age of rocks.
Carbon dating works well only for objects that are less than 50,000 years. Most rocks are far older than that. Over time, carbon-14 decays gradually into nitrogen. Hence, we can not really use radiocarbon dating to determine the absolute age of a rock sample since the carbon-14 in the fossils of ancient rock samples may have completely decayed.
Answer:
option b. B3+
Explanation:
Boron takes the 5th position on the periodic table, therefore it has 5 electrons....2 on the inside and 3 on the outside. when it lost it 3 external electrons, it become positively charged with the amount of electron it loses.
ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states: , , , etc.
Normal metals such as also show variable valencies. Certain non-metals are also found to show more than one valence state
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a) →
5 b) →
5 c) → (already balanced so don't need to change)
5 d) →
5 e) →
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.