- The complexity of Earth is beyond the capabilities of computer simulations.
- Numerous assumptions that must be made by computer models have a big impact on the forecasts they produce.
- A computer model can incorporate historical climate data, but it is not possible to draw assumptions about future climates using this data in any way.
- A computer model cannot distinguish between anthropogenic climate change and natural climatic fluctuations.
<h3>How precise are temperature forecasts made by climate models?</h3>
The forecasting of global surface temperatures is one of the most significant results of climate models.
Scientists evaluate the effectiveness of their models by contrasting observations of the Earth's climate with predictions of future temperatures and "hindcasts" of past temperatures. Then, by comparing specific climate models and the average of all models to actual warming, scientists may determine whether temperature projections are accurate.
Researchers can have more faith that models can effectively predict future changes in the same factors if they successfully simulate the climate response in the past.
To know more about climate models, visit:
brainly.com/question/21837297
#SPJ4
--vertical from ground to top--
v^2 = u^2 + 2as
with v= 0, a=g, s=u^2/(-2g)
g on the moon is 1/6
u is equal, then it goes 6 times higher on the moon.
v = u + at
with v= 0, a=g, t = u/(-g)
g on the moon is 1/6
u is equal, then it takes 6 times longer on the moon.
--horizontal--
s = vt , v is equal
t on the moon is 6 time longer
it moves 6 times farer on the moon
Since the ball is fired horizontally, the initial y velocity is zero and the time to hit the ground is the same as if the ball was simply dropped from the cliff. So you can solve the y position function:

giving a height of 44.1m.
The given final velocity vector tells us that the initial x-directed velocity was about 17m/s.
Answer:
The correct answer will be "
".
Explanation:
The time it would take again for current or electricity flows throughout the circuit including its LR modules can be connected its full steady-state condition is equal to approximately 5
as well as five-time constants.
It would be calculated in seconds by:
⇒ 
, where
- R seems to be the resistor function in ohms.
- L seems to be the inductor function in Henries.
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 