The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4
Answer:
high tension: 4.2 × 1.5 = 6.3 cm/s
medium tension: 2.8 ×1.5 = 4.2 cm/s
low tension: 0.8 × 1.5 = 1.2 cm/s
Explanation: Given Settings:
amplitude: 0.75 cm
damping: zero
Using
Speed = frequency ×wavelength
Where
Wavelength = 0.75 × 2 = 1.5 cm
Therefore:
high tension: 4.2 × 1.5 = 6.3 cm/s
medium tension: 2.8 ×1.5 = 4.2 cm/s
low tension: 0.8 × 1.5 = 1.2 cm/s
Answer:
n₁ > n₂.
prisms are made of glass with refractive index n₂ = 1.50, so the fluid that surrounds the prism must have an index n₁> 1.50
Explanation:
Total internal reflection occurs when the refractive index of the incident medium the light is greater than the medium to which the light is refracted, let's use the refraction equation
n₁ sin θ₁ = n₂ sin θ₂
the incident medium is 1, at the limit point where refraction occurs is when the angle in the refracted medium is 90º, so sin θ₂ = 1
n₁ sin θ₁ = n₂
sin θ₁ = n₂ / n₁
We mean that this equation is defined only for n₁ > n₂.
In our case, for the total internal reflection to occur, the refractive incidence of the medium must be greater than the index of refraction of the prism.
In general, prisms are made of glass with refractive index n₂ = 1.50, so the fluid that surrounds the prism must have an index n₁> 1.50
Force of gravity on an object is the weight of the object and is given by mass times accerelation due to gravity. The accerelation due to gravity is the accerelation of an object in free fall and is given by 9.8m/s^2. Given that the force of gravity acting on a child's mass on earth is 490 newtns, i.e. F = mg which means that 490 newtons = 9.8 times mass. Therefore, mass of the child is 490 / 9.8 = 50 kg.
The smallest one is the least powerful one. And the medium size one is the medium powerful one. And the largest one is the most powerful one of them all