Answer:
i = 2.79
Explanation:
The excersise talks about the colligative property, freezing point depression.
Formula to calculate the freezing point of a solution is:
Freezing point of pure solvent - Freezing point of solution = m . Kf . i
Let's replace data given. (i = Van't Hoff factor, numbers of ions dissolved in solution)
48.1°C - 44°C = 0.15 m . 9.78°C/m . i
4.1°C / (0.15 m . 9.78°C/m) = i
i = 2.79
In this case, numbers of ions dissolved can decrease the freezing point of a solution, which is always lower than pure solvent.
Hi There! :)
Active <span>transport requires the use of energy. :)
Therefore A</span>
Answer:
Option D. AlCl₃, MgC₂
Explanation:
We need to dissociate all the salts, to determine the i. (Van't Hoff factor).
The salt who has the highest value, will be the better conductor of electricity
CsCl → Cs⁺ + Cl⁻ i = 2
CaCl → Ca²⁺ + Cl⁻ i = 2
CaS → Ca²⁺ + S⁻² i = 2
Li₂S → 2Li⁺ + S⁻² i = 3
KBr → K⁺ + Br⁻ i = 2
AlCl₃ → Al³⁺ + 3Cl⁻ i = 4
MgC₂ → Mg²⁺ + 2C⁻ i = 3
KI → K⁺ + I⁻ i = 2
K₂S → 2K⁺ + S⁻² i = 3
The biggest i, is in pair D.