D. oxygen is used to break down glucose into energy
Explanation:
During respiration, oxygen is used to break down glucose into energy:
C₆H₁₂O₆ + O₂ → CO₂ + H₂O + energy
In the process of respiration, oxygen gas combines with glucose to liberate energy.
- Respiratory system in the body is responsible for the metabolic break down of food to provide energy for the working of the human body.
- Chemical energy in glucose is broken down to produce other forms of energy most especially heat.
- The by product is usually carbon dioxide and water vapor.
Learn more:
Respiration brainly.com/question/3447259
#learnwithBrainly
The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
Answer: Option (b) is the correct answer.
Explanation:
As on increasing the temperature, the molecules gain more kinetic energy due to which they tend to collide and move rapidly from one place to another.
Thus, we can conclude that when temperature is increased, the kinetic energy of the molecules increases.
This means that temperature is directly proportional to the average kinetic energy of a gas.
Explanation:
You may not realise it, but you come across aldehydes and ketones many times a day. Take cakes and biscuits, for example. Their golden, caramelised crust is formed thanks to the Mailliard reaction. This is a process that occurs at temperatures above 140° C, when sugars with the carbonyl group in foods react with nucleophilic amino acids to create new and complex flavours and aromas.
Another example is formaldehyde. Correctly known as methanal, it is the most common aldehyde in industry. It has multiple uses, such as in tanning and embalming, or as a fungicide. However, we can also react it with different molecules to make a variety of more useful compounds. These include polymers, adhesives and precursors to explosives. But how do aldehydes and ketones react, and why?You should remember from Aldehydes and Ketones that they both contain the carbonyl functional group , . This is a carbon atom joined to an oxygen atom by a double bond. Let's take a closer look at it.
If we compare the electronegativities of carbon and oxygen, we can see that oxygen is a lot more electronegative than carbon.
The molecular formula of the compound that we are required to find is the compound C4H8O8
<h3>What is empirical formula?</h3>
The empirical formula of a compound is a formula that shows the ratio of each atom present in the compound. We will start by dividing each mass with the relative atomic mass of the atom.
Carbon - 48.38 g/12 Hydrogen - 6.74 g/1 Oxygen - 53.5 g/16
Carbon - 4 Hydrogen - 6.74 Oxygen - 8.9
Dividing through by the lowest ratio;
Carbon - 4/4 Hydrogen - 6.74/4 Oxygen 8.9/4
Carbon 1 Hydrogen 2 Oxygen 2
The empirical formula is CH2O2.
To obtain the molecular formula; brainly.com/question/11588623
[12 + 2 + 32]n = 180
n = 180/[12 + 2 + 32]
n =4
The compound C4H8O8
Learn more about empirical formula: