Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Answer:
Explanation:
From, the given information: we are not given any value for the mass, the proportionality constant and the distance
Assuming that:
the mass = 5 kg and the proportionality constant = 50 kg
the distance of the mass above the ground x(t) = 1000 m
Let's recall that:

Similarly, The equation of mption:

replacing our assumed values:
where 



So, when the object hits the ground when x(t) = 1000
Then from above derived equation:


By diregarding 

1000 + 0.981 = 0.981 t
1000.981 = 0.981 t
t = 1000.981/0.981
t = 1020.36 sec
B,a current flows through the wire
Ok so it is 42.8 because if you - 43.9 by 1.1 by the way don’t listen to any of the I just want point