Answer:
The combined velocity is 8.61 m/s.
Explanation:
Given that,
The mass of a truck, m = 2800 kg
Initial speed of truck, u = 12 m/s
The mass of a car, m' = 1100 kg
Initial speed of the car, u' = 0
We need to find the combined velocity the moment they stick together. Let it is V. Using the conservation of momentum.

So, the combined velocity is 8.61 m/s.
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J
Answer: B = 1380T
Explanation: please find the attached file for the solution
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:

