In this problem, we need to use the ideal gas law. The following is the formula used in ideal gas law: PV = nRT, where n refers to the moles and R is the gas constant.
Given
P = 10130.0 kPa
V = 50 L
T = 300 degree celcius + 273.15 = 573.15 K
R = 8.314 L. kPa/K.mol
Solution
To get the moles which represent the "n" in the formula, we need to rearrange the equation.
PV = nRT PV
---- ------ ---> n = --------
RT RT RT
10130.0 kPa x 50 L
n= ---------------------------------------------
8.314 L. kPa/K.mol x 573.15 K
506,500
= ----------------------------
4,765.17 mol K
=106.29 mol Ar
So the moles of argon gas is 106.29 moles
The lighter components are able to rise higher in the column before they are cooled to their condensing temperature, allowing them to be removed at slightly higher levels.
I hope this helps
The volume increases when the balloon temperature increases.
<u>Explanation:</u>
-10 F is converted into Kelvin as 249 K.
0°C is nothing but 0+ 273 = 273 K
And the room temperature is 25°C which is converted into Kelvin as 273 + 25 = 298 K.
249 K is below room temperature.
As per the Charles' law volume and temperature are directly proportional to each other, when the pressure of the gas remains constant.
V ∝ T
As the balloon temperature increases, the volume also increases.
According to the formula you have given us to work with . . .
1). The airplane's acceleration is
(80 m/s north - zero) / (20 sec) = 4 m/sec^2 north
2). For the cyclist:
(V-final - zero) / 20sec = 0.5 m/s^2 south
Multiply each side by 20s : V-final = 0.5 m/s^2 south x (20sec) =
10 m/s south
Do you mean 4+7 if yes it’s 11