Answer:

Explanation:
Hello,
In this case, we consider oxygen as an ideal gas, for that reason, we use yhe ideal gas equation to compute the moles based on:

Hence, at 3.50 atm and 25 °C for a volume of 2.00 L we compute the moles considering absolute temperature in Kelvins:

Best regards.
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Answer:
56°
Explanation:
First calculate 

The interplanar spacing can be calculated from:

The diffraction angle is determined from:

Solve for 

The diffraction angle is:

The right answer for the question that is being asked and shown above is that: "where plants, animals, the landscape and the climate are all independent of each other." An ecosystem is a geographical area <span>where plants, animals, the landscape and the climate are all independent of each other.</span>