Answer:
The Ka is 9.11 *10^-8
Explanation:
<u>Step 1: </u>Data given
Moles of HX = 0.365
Volume of the solution = 835.0 mL = 0.835 L
pH of the solution = 3.70
<u>Step 2:</u> Calculate molarity of HX
Molarity HX = moles HX / volume solution
Molarity HX = 0.365 mol / 0.835 L
Molarity HX = 0.437 M
<u />
<u>Step 3:</u> ICE-chart
[H+] = [H3O+] = 10^-3.70 = 1.995 *10^-4
Initial concentration of HX = 0.437 M
Initial concentration of X- and H3O+ = 0M
Since the mole ratio is 1:1; there will react x M
The concentration at the equilibrium is:
[HX] = (0.437 - x)M
[X-] = x M
[H3O+] = 1.995*10^-4 M
Since 0+x = 1.995*10^-4 ⇒ x=1.995*10^-4
[HX] = 0.437 - 1.995*10^-4 ≈ 0.437 M
[X-] = x = 1.995*10^-4 M
<u>Step 4: </u>Calculate Ka
Ka = [X-]*[H3O+] / [HX]
Ka = ((1.995*10^-4)²)/ 0.437
Ka = 9.11 *10^-8
The Ka is 9.11 *10^-8
<h2>Answer:</h2>
<u>The right option is</u><u> (C) intermediate conductivity and a high melting point</u>
<h2>Explanation:</h2>
Metalloids usually look like metals but behave largely like nonmetals. Metalloids are shiny, brittle solids with intermediate good electrical conductivity. Their properties lie between metals and non metals. All metalloids exist as solids at room temperature and they have very high melting points. The physical properties of metalloids are more likely to be metallic, but their chemical properties tend to be non-metallic
Answer:
P = 1/8
Explanation:
The wave function of a particle in a one-dimensional box is given by:

Hence, the probability of finding the particle in the one-dimensional box is:


Evaluating the above integral from x₁ = 0 to x₂ = L/8 and solving it, we have:
Solving for n=4:
I hope it helps you!
The correct answer is 0.15.
We are aware that there is 0.05 mol of an unidentified hydrocarbon we will refer to as "X" and that its burning produces 6.6 g of carbon dioxide and 3.6 g of water.
These quantities might be converted to moles by applying the following formula:
amount= mass/ relative atomic mass
Thus, the following equation may be written for H2O: moles = 3.6 / 18 = 0.2 and for CO2: moles = 6.6 / 44 = 0.15.
0.05X + x'O2 = 0.15CO2 + 0.2H2O
This may be made simpler by dividing through by 0.05 (this step is likely to be the most helpful to you), resulting in:
1 x + x O2 = 3 co2 + 4 H2O
The hydrocarbon must have been the source of all the carbon in the carbon dioxide and all the hydrogen in the water.
Accordingly, 4 x 2 = 8 moles of H and 3 x 1 = 3 moles of C.
There are 3/1 = 3 Cs and 8/1 = 8 Hs in one X molecule.
This clearly identifies C3H8 or propane as the hydrocarbon X (dividing by 1 seems unnecessary, but it illustrates the process to use if there were more than one mol of X in the first equation).
To learn more about number of moles of carbon dioxide refer the link:
brainly.com/question/12723070
#SPJ9