Answer: The mass of the displaced liquid is equal to the volume of the liquid multiplied by its density. When a boat is placed in water, the volume of displaced water is equal to the mass of the boat.
I hope this helped!
The answer the following are as follows:
<span> 1. XeF4 - molecules are polar
3. CCl4 - molecules are polar
5. CH3Br - molecules are non-polar
I hope my answer has come to your help. God bless and have a nice day ahead!</span>
The liquid to gas phase transition results in the largest increase in entropy.
<h3>
What is Entropy?</h3>
- Entropy is a measureable physical characteristic and a scientific notion that is frequently connected to a condition of disorder, unpredictability, or uncertainty.
- From classical thermodynamics, where it was originally recognized, through the microscopic description of nature in statistical physics, to the fundamentals of information theory, the phrase and concept are utilized in a variety of disciplines.
- It has numerous applications in physics and chemistry, biological systems and how they relate to life, cosmology, economics, sociology, weather science, and information systems, especially the exchange of information.
- Entropy has the effect of making some processes impossible or irreversible, in addition to the necessity that they not go against the first law of thermodynamics, which is the conservation of energy.
To learn more about entropy with the given link
brainly.com/question/13146879
#SPJ4
E. co and n2Effusion is the process where gas escapes through a hole. Gases with a lower molecular mass effuse more speedy than gases with a higher molecular mass. R<span>elative rates of effusion is related to the molecular mass.
a) M(N</span>₂)/M(O₂) = 28/32 = 0,875
b) M(N₂O)/M(NO₂) = 44/46 = 0,956
c) M(CO)/M(CO₂) = 28/44 = 0,636
d) M(NO₂)/M(N₂O₂) = 44/58= 0,758
e) M(CO)/M(N₂) = 28/28 = 1, <span>CO and N</span>₂ <span>have iexact molecular masses and will effuse at nearly identical rates.</span>
Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.