Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
Answer:
See below ~
Explanation:
The calculated values of V/n :
⇒ 1.5/0.3 = 5
⇒ 3/0.6 = 5
⇒ 4.5/0.9 = 5
⇒ 6/1.2 = 5
⇒ 7.5/1.5 = 5
1. From this we understand that the calculated values of V/n remain constant, equal to <u>5</u> in this case.
2. The volume-mole graph will be a straight line passing through the origin. (Attached below)
The answer is "chemical properties". The original water is split apart by the current
<span>to form its constituent elements, hydrogen & oxygen. This is a chemical change, as </span>
<span>the original water is lost and new substances, H2 & O2, are produced. </span>
<span>Hope this answers your question.</span>