Answer:
1) The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
2) The amount (in grams) of excess reactant H₂ = 4.39 g.
Explanation:
- Firstly, we should write the balanced equation of the reaction:
<em>N₂ + 3H₂ → 2NH₃.</em>
<em>1) To determine the limiting reactant of the reaction:</em>
- From the stichiometry of the balanced equation, 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- This means that <em>N₂ reacts with H₂ with a ratio of (1:3).</em>
- We need to calculate the no. of moles (n) of N₂ (5.23 g) and H₂ (5.52 g) using the relation:<em> n = mass / molar mass.</em>
The no. of moles of N₂ in (5.23 g) = mass / molar mass = (5.23 g) / (28.00 g/mol) = 0.1868 mol.
The no. of moles of H₂ (5.52 g) = mass / molar mass = (5.52 g) / (2.015 g/mol) = 2.74 mol.
- From the stichiometry, N₂ reacts with H₂ with a ratio of (1:3).
The ratio of the reactants of N₂ (5.23 g, 0.1868 mol) to H₂ (5.52 g, 2.74 mol) is (1:14.67).
∴ The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
<em>2) To determine the amount (in grams) of excess reactant of the reaction:</em>
- As showed in the part 1, The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
- Also, 0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
- The no. of moles are in excess of H₂ = 2.74 mol - 0.5604 mol (reacted with N₂) = 2.1796 mol.
- ∴ The amount (in grams) of excess reactant H₂ = n (excess moles) x molar mass = (2.1796 mol)((2.015 g/mol) = 4.39 g.
Negative ions are attracted to the anode. In the process of electrolysis, current can flow through a liquid because negative ions are attracted to the anode.
You get a tub of warm water and tip the warm water into the cold water
Answer:
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, in general, are not reversible except by further chemical reactions.
Explanation: