It’s molecular shape.
When the two hydrogen atoms bond with the oxygen, they attach to the top of the molecule rather like Mickey Mouse ears. This molecular structure gives the water molecule polarity, or a lopsided electrical charge that attracts other atoms. The end of the molecule with the two hydrogen atoms is positively charged.
Dmitri Mendeleev is the answer
PV = nRTP is pressure, V is volume in L, n is number of moles, R is the gas constant,and T is temperature in K
(1.5 atm)(1 L) = (n)(.08206)(301K)
n = .06 moles in one liter
If there are 3.9 grams in .06 moles then
1/.06 x 3.9 = 64.2 grams per mol
The combustion reaction is as expressed,
CxHy + O2 --> CO2 + H2O
The mass fraction of carbon in CO2 is 3/11. Hence,
mass of C in CO2 = (3.14 g)(3/11) = 0.86 g C.
Given that we have 1 g of the hydrocarbon, the mass of H is equal to 0.14 g.
moles of C = 0.86 g C / 12 g = 0.0713
moles of H = 0.14 g H / 1 g = 0.14
The empirical formula for the hydrocarbon is therefore, CH₂.
The graphics in the attachment is part of the question, which was incomplete.
Answer: Fr = 102N and angle of approximately 11°.
Explanation: From the attachment, it is observed that from the three forces acting on M, two are perpendicular. So to find them, we have to show their x- and y- axis components. From the graph:
Fx = 70+40-10 = 100
Fy = 40-20 = 20
Now, as the forces form a triangle, the totalforce is:
Fr = 
Fr = 
Fr = ≈ 102N
To determine the angle requested, we use:
arctg H = 
arctg H = 
H = tg 0.2 ≈ 11°.