m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
Person standing on A will hear the loudest sound
Explanation:
The intensity of a sound wave (which is proportional to the loudness of the sound) follows an inverse square law, which is:

where
I is the intensity of the wave
r is the distance from the source of the sound
This equation means that the intensity of the sound wave (and therefore, its loudness) is inversely proportional to the square of the distance from the source: therefore,
- As we get closer to the source of sound, the loudness increases
- As we move away from the source of sound, the loudness decreases
Therefore, the person that will hear the loudest sound is the one standing closer to the source, and therefore person A.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
It has 50kg with a velocity of 1 m/s times the speed of the cart divided by 2 and multiplied by kinectic x plus 5
Answer:
a= 4.4×10 m/s^2
Explanation:
pressure P = E/c
Where, E = 100 W/m^2 intensity of light
c= speed of light = 3×10^8 m/s
P = 1000/ 3×10^8
P = 3.33×10^(-6) Pa
Force F = P×A
- P is the pressure and c= speed of light
F = 3.33×10^{-6}×6.65×10(-29)
= 2.22×10^{-6}
acceleration a = F/m = 2.22×10^{-6}/ 5.10×10^{-27}
a= 4.4×10 m/s^2
B. It's an example of velocity due to the fact that it has a measurement of speed, divided by time, and has a specific direction. Acceleration doesn't have any direction on it, but has speed divided by time. C and D have a different mode of measurement despite of the fact that it still needs meters/miles/km.