The force exerted by a magnetic field on a wire carrying current is:

where I is the current, L the length of the wire, B the magnetic field intensity, and

the angle between the wire and the direction of B.
In our problem, the force is F=0.20 N. The current is I=1.40 A, while the length of the wire is L=35.0 cm=0.35 m. The angle between the wire and the magnetic field is

, so we can re-arrange the formula and substitute the numbers to find B:
Answer:
1. 2.12105 J. The final kinetic energy is. KE f mv2. (875.0 kg)(44.0 m/s)2 2.What is the velocity of the two hockey players after the collision? ... A 10.0-kg test rocket is fired vertically from.
Explanation:
Sana maka tulong
The correct answer is B the total velocity is equal at both landing and launch because before your about launch you have 0 velocity then when you have landed you also have 0 velocity. Hope This Helps
Answer Explanation :
Poiseuille equation: this equation is used for non ideal flow this is used for the calculation of pressure in laminar flow it is physical law we know that fluid in laminar flow, flows across the pipe whose diameter is larger than the length of pipe
in mathematical form the equation can be expressed as
Q = 
where η is the cofficient of viscosity
now if we assume a small sphere of radius a is suspended freely in the plane of the laminar flow then for assuring that the sphere does not migrate with the flow we have to calculate the rate of flow of the liquid
5kg
50cm
500in
Hope this helped good luck to you