Explanation:
Hole. Hole. Different notes can be played on the flute by blocking holes. ...
Drum skin. Drum skin. Hitting the bongo drum makes its tight elastic skin vibrate.
String. String. ...
Sound. hole. ...
Bow. Bow.
Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
The electric field strength of a point charge is inversely proportional to the square of the distance from the charge ... a lot like gravity.
If the magnitude of the field is (2E) at the distance 'd', then at the distance '2d', it'll be (2E)/(2²). That's (2E)/4 = 0.5E .
Answer:

Explanation:
Data provided in the question:
Height above the ground, H= 5.0m
Range of the ball, R= 20 m
Initial horizontal velocity =
Initial vertical velocity=
(Since ball was thrown horizontally only)
Acceleration acting horizontally,
= 0 m/s² [ Since no acceleration acts horizontally) ]
Vertical Acceleration,
= 9.8 m/s² (Since only gravity acts on it)
Let 't' be the time taken to reach ground
Therefore, using equations of motion, we have



Then using Equations of motion for horizontal motion,



Elevation would be showing you what height you are at, energy would be like what force your putting into the object.