1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
salantis [7]
3 years ago
13

The head of a grass string trimmer has 100 g of cord wound in a light, cylindrical spool with inside diameter 3.00 cm and outsid

e diameter 18.0 cm as shown in the figure below. The cord has a linear density of 10.0 g/m. A single strand of the cord extends 16.0 cm from the outer edge of the spool. (a) When switched on, the trimmer speeds up from 0 to 2 250 rev/min in 0.230 s. What average power is delivered to the head by the trimmer motor while it is accelerating? W (b) When the trimmer is cutting grass, it spins at 1 915 rev/min and the grass exerts an average tangential force of 8.80 N on the outer end of the cord, which is still at a radial distance of 16.0 cm from the outer edge of the spool. What is the power delivered to the head under load?

Physics
2 answers:
Novosadov [1.4K]3 years ago
7 0

Answer:

a) 72.2 W

b) 441 W

Explanation:

faust18 [17]3 years ago
4 0

Answer:

a).11.546J

b).2.957kW

Explanation:

Using Inertia and tangential velocity

a).

w=2250*2\pi *\frac{1}{60}\\ w=235.61

I=\frac{1}{2}*m*((\frac{d_{i} }{2})^{2} +(\frac{d_{e} }{2})^{2})\\m=100g *\frac{ikg}{1000g}=0.1kg\\ d_{i}=3cm*\frac{1m}{100cm}=0.03m \\ d_{e}=18cm*\frac{1m}{100cm}=0.18m\\I=\frac{1}{2}*0.1kg*((\frac{0.03m}{2})^{2} +(\frac{0.18m}{2})^{2})\\I=0.41625x10^{-3}kg*m^{2}

Now using Inertia an w

E=\frac{1}{2}*I*(w)^{2} \\ E=\frac{1}{2}*0.416x10^{-3}*(235.61)^{2} \\E=11.54J

average power=\frac{11.4J}{0.230s}=50.2 W

b).

power=t*w

P=11.5465*0.25*235.61

P=2.957 kW

You might be interested in
Why doesn't the motor work?
exis [7]

Answer:

c

Explanation: its weird

8 0
3 years ago
If the angle of incidence of a light source to a shiny surface is 30 degrees, what will the angle
Virty [35]
<h3>Answer: D) 30</h3>

Angle of incidence always equals angle of reflection. Think of a tennis ball being hit into a wall. The ball will bounce off at the same angle that it approached with. The angles mentioned are formed through the line called the "normal", which is the line perpendicular to the surface.

5 0
3 years ago
Read 2 more answers
In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these s
riadik2000 [5.3K]

Answer:

Part a)

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

Explanation:

As we know that the see saw bar is massless so here torque due to two masses is given as

\tau = I\alpha

here we will have

\tau = (m_1g - m_2g)(\frac{L}{2})

now we will have inertia of two masses given as

I = (m_1 + m_2)(\frac{L}{2})^2

now we have

I = (m_1 + m_2)\frac{L^2}{4}

now the angular acceleration is given as

\alpha = \frac{\tau}{I}

so we have

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

Now if the rod is not massles then we will have total inertia given as

I = (m_1 + m_2)(\frac{L}{2})^2 + \frac{m_{bar}L^2}{12}

so we will have

I = (m_1 + m_2)\frac{L^2}{4} + \frac{m_{bar}L^2}{12}

now the acceleration is given as

\alpha = \frac{\tau}{I}

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

7 0
3 years ago
An object that is slowing down in a positive direction must have
zepelin [54]

Answer:

Positive velocity and negative acceleration

Explanation:

An object moving in the positive direction has a positive velocity.

An object that's slowing down while moving in the positive direction has a negative acceleration.

5 0
3 years ago
Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
AysviL [449]
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to
E= \frac{\sigma}{2\epsilon_0}
where
\sigma is the charge density
\epsilon_0 is the vacuum permittivity

We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
E=30 N/C
7 0
3 years ago
Other questions:
  • Light refracts when traveling from air into glass because light
    8·1 answer
  • A 0.80-kg soccer ball experinces an impulse of 25 N x s . Determine the momentum change of the soccer ball.
    8·2 answers
  • A bag of sugar weighs 1.50 lb on earth. what would it weigh in newtons on the moon, where the free-fall acceleration is one-sixt
    11·1 answer
  • During takeoff, an airplane goes from 0 to 56 m/s in 9 s. How fast is it going after 4 s?
    10·1 answer
  • The Sun's surface temperature is closest to _____.
    7·2 answers
  • Unless otherwise authorized, the maximum indicated airspeed at which aircraft may be flown when at or below 2,500 feet AGL and w
    8·1 answer
  • List three examples of a skillets (cooking utensil) basic use.
    11·2 answers
  • Energy in an ecosystem's energy pyramid always flows from __________.
    10·2 answers
  • A fin whale is swimming at the speed of 35 km/h how many hours will it take to swim 7 km
    7·1 answer
  • Sage measured her rectangular house as 15.24 m long and 9.1 m wide. Using her calculator, she multiplied the length by the width
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!