Astronomers believe some stars are moving away from earth by measuring the extent to which their light is “stretched” into the red part of the color spectrum, representing the lower frequencies on that spectrum.
In short, stars moving away from earth are “red-shift”, while if they were moving towards the earth they would take on a “blue-shift”.
(1) Changing Fahrenheit to Celsius:
The formula used to convert from Fahrenheit to Celsius is as follows:
C = <span>(F - 32) * 5/9
</span>We are given that F=200, substitute in the above formula to get the corresponding temperature in Celsius as follows:
C = (200-32) * (5/9) = 93.333334 degrees Celsius
(2) Changing the Fahrenheit to kelvin:
The formula used to convert from Fahrenheit to kelvin is as follows:
K = <span>(F - 32) * 5/9 + 273.15
</span>We are given that F = 200. substitute in the above formula to get the corresponding temperature in kelvin as follows:
K = (200-32)*(5/9) + 273.15 = 366.483334 degrees kelvin
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
No, a body can not have its velocity constant, while its speed varies. Rather, it can have its speed constant and its velocity varying. For example in a uniform circular motion.