Answer:
Malcolm is showing evidence of gambler's fallacy.
This is the tendency to think previous results can affect future performance of an event that is fundamentally random.
Step-by-step explanation:
Since each round of the roulette-style game is independent of each other. The probability that 8 will come up at any time remains the same, equal to the probability of each number from 1 to 10 coming up. That it has not come up in the last 15 minutes does not increase or decrease the probability that it would come up afterwards.
2x^2 if x=1/8 is 1/16
4x^2 if x=1/8 is 1/2
654,035 654,035 654,035 654,035 654,035 654,035 654,035
Answer:
(1, -3/2)
Step-by-step explanation:
The x coordinate is the same for both endpoints so the x coordinate for the midpoint is 1
The y coordinate for the midpoint is found by adding the two y coordinates and dividing by 2
(2+-5)/2 = -3/2
The midpoint is
(1, -3/2)
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5