The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

Answer: Hydrogen atoms and oxygen atoms
Explanation:
The H stands for Hydrogen and there is two of those and the O is Oxygen and there is one of them giving you H2O
Answer:
Velocity is the rate of change of displacement.
Answer:
They will not meet
h-hX=1.2*g*t²
hX=v0*t-(1/2*g*t²)
Explanation:
fall h=1/2*g*t²
elevation time if v0=20 m/s te=v0/g=20 m/s /9.81 m/s²=2.0387s
hmax=v0²/(2*g)=(400 m²/s²)/19.62 m/s²2=20.387 m
free fall
t=2.0387s yields hX=1/2*g*t²=20.387 m
h-hX=200m - 20.387 m=179,613 m.
so, the second body has not enough initianoal speed to reach a meeting point
The awnser is. 1728000 kilometers