Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
<span>Have Bobby as a horizontal force pushing towards/against the tv.
</span><span>Have the force of gravity going downwards from the tv on the floor.
</span><span>Have the force of fric±on between the Foor and the tv
</span>Maybe another force could be bobby's feet pushing from the Foor and his weight (from gravity) bearingdown on his feet. If he didn't weigh more then the tv then he wouldn't be able to put enough pressure<span>on the Foor to create the gripping fric±on force necessary to push the tv</span>
Answer:
v = 1.32 10² m
Explanation:
In this case we are going to use the universal gravitation equation and Newton's second law
F = G m M / r²
F = m a
In this case the acceleration is centripetal
a = v² / r
The force is given by the gravitational force
G m M / r² = m v² / r
G M/r = v²
Let's calculate the mass of the planet
M = v² r / G
M = (1.75 10⁴)² 5.00 10⁶ / 6.67 10⁻¹¹
M = 2.30 10²¹ kg
With this die we clear the equation to find the orbit of the second satellite
v = √ G M / r
v = √ (6.67 10⁻¹¹ 2.30 10²¹ / 8.75 10⁶)
v = 1.32 10² m
Static friction is the friction that exists between a stationary object and the surface on which it's resting.
frictional force occurs when you try to push an object alongside a surface.
Answer:
the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case
Explanation:
Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.