Answer:
9.773m/s2
Explanation:
Given,
h=8848m
The value of sea level is 9.08m/s2
So,
Let g′ be the acceleration due to the gravity on the Mount Everest.
g′=g(1−h2h)
=9.8(1−640000017696)
=9.8(1−0.00276)
9.8×0.99724
=9.773m/s2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s2
Hope it helped!!!
F = force applied to stop the car = - 3000 N
m = mass of the car = 3000 kg
a = acceleration of the car = ?
v₀ = initial velocity of the car before the force is applied to stop it = 10 m/s
v = final velocity of the car when it comes to stop = 0 m/s
d = stopping distance of the car
acceleration of the car is given as
a = F/m
inserting the values
a = - 3000/3000
a = - 1 m/s²
using the kinematics equation
v² = v²₀ + 2 a d
inserting the values
0² = 10² + 2 (-1) d
0 = 100 - 2 d
2 d = 100
d = 100/2
d = 50 m
hence the correct choice is
C. 50 m
1Draw a quick sketch of the object.
2Draw an arrow showing every force acting on the object.
3<span>To calculate the net force, add any vectors acting on the same axis (x and y), making sure to pay attention to the directions.
Hope this helps :)
</span>
Fact. Using lift equipment would take longer.