Answer:
sin 2θ = 1 θ=45
Explanation:
They ask us to prove that the optimal launch angle is 45º, for this by reviewing the parabolic launch equations we have the scope equation
R = Vo² sin 2θ / g
Where R is the horizontal range, Vo is the initial velocity, g the acceleration of gravity and θ the launch angle. From this equation we see that the sine function is maximum 2θ = 90 since sin 90 = 1 which implies that θ = 45º; This proves that this is the optimum angle to have the maximum range.
We calculate the distance traveled for different angle
R = vo² Sin (2 15) /9.8
R = Vo² 0.051 m
In the table are all values in two ways
Angle (θ) distance R (x)
0 0 0
15 0.051 Vo² 0.5 Vo²/g
30 0.088 vo² 0.866 Vo²/g
45 0.102 Vo² 1 Vo²/g
60 0.088 Vo² 0.866 Vo²/g
75 0.051 vo² 0.5 Vo²/g
90 0 0
See graphic ( R Vs θ) in the attached ¡, it can be done with any program, for example EXCEL
The parietal layers of the membranes line the walls of the body cavity.
hope this helps
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Refraction is a phenomenon which results when a ray of light enters from one medium to another medium. When a ray of light enters from denser medium to rarer medium, it bends away from the normal. The laws of refraction are: The incident ray, the refracted ray and the normal all lie in the same plane.