yes
evaporation starts on the surface
The second runner must run 3.3m/s. If the leading runner is 1.5 seconds ahead and there are 30m left, the second runner would need to run slightly faster than the lead in order to finish at the same time. To calculate this I did 30/1.5 which gave me 0.05. I added this onto the speed of the lead runner to get 3.3m/s :)
Answer:
Explanation:
Given
Mass of solid uniform disk 
radius of disk 
mass of lump 
distance of lump from axis 
Moment of inertia is the distribution of mass from the axis of rotation
Initial moment of inertia of disk 

Final moment of inertia
=Moment of inertia of disk+moment of inertia of lump about axis




The force required to push the box upward is 145.3N and the force to pus the box downward is -109.3N
Data given;
- mass = 15kg
- angle = 30 degree
- acceleration = 1.2 m/s^2
- acceleration due to gravity = 9.8 m/s^2
<h3>Force against gravity</h3>
To move the plane upward, the box will move against gravity.

Let's solve for F

<h3>Force towards gravity</h3>
When the force pushes the box down the inclined plane, it moves towards gravity.

The force required to push the box upward is 145.3N and the force required to push the box downward is -109.3N
Learn more on force across an inclined plane here;
brainly.com/question/11888124
Answer:
a= F/m
Explanation:
Newton's Second Law of Motion : It states that that the rate of change of momentum of a body is proportional to the applied force and it takes place on the direction of the force applied.
Mathematically,
F = m ( v-u)/t
F = ma
a = F/m
The same force was applied to each of the balls yet, the acceleration of one was greater than the other. The kickball accelerated at a greater pace than the soccer ball because it has a lesser mass hence the effect or impact of the force applied will be greatly felt by the kickball.