b is the answer i hope this helped...
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer:
1 micron = 1.00E-6 m is one way
1.00^-6 m is another but is not usually considered scientific notation, but
often convenient to use.
In physics, work is defined as the total energy when an object is moved to a certain displacement by the application of external force. It is calculated by the expression W = Fd. For this case, the displacement is apparently zero, then there is no work in the system above.
At point x = 0, the particle accelerates. Since there will be change of velocity at that point. The the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Given that a 2.0 kg particle moving along the z-axis experiences the force shown in a given figure.
Force is the product of mass and acceleration. While acceleration is the rate of change of velocity. Both the force and acceleration are vector quantities. They have both magnitude and direction.
If the particle's velocity is 3.0 m/s at x = 0 m, that mean that the particle experience change of velocity at point x = 0. Since the the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Learn more here: brainly.com/question/20366032