Solve for X on both equations
2x - 2 < -12
Add two on both sides
2x < -10
Divide by two on both sides
2 < -5
2x + 3 > 7
Subtract three on both sides
2x > 4
Divide by two on both sides
x > 2
A. x < -5 or x > 2
Jan can eat 0.40 hot dogs per minute.
Answer:
C. f(5) = 13 and f(-3) = -3
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 2x + 3
x = 5
x = -3
<u>Step 2: Evaluate</u>
x = 5
- Substitute: f(5) = 2(5) + 3
- Multiply: f(5) = 10 + 3
- Add: f(5) = 13
x = -3
- Substitute: f(-3) = 2(-3) + 3
- Multiply: f(-3) = -6 + 3
- Add: f(-3) = -3
Answer:
5). x = 11.9°
6). x = 27.2°
Step-by-step explanation:
5). By applying cosine rule in the given triangle,
cos(32)° = ![\frac{\text{Adjacent side}}{\text{Hypotenuse}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7BAdjacent%20side%7D%7D%7B%5Ctext%7BHypotenuse%7D%7D)
cos(32)° = ![\frac{x}{14}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B14%7D)
x = 14cos(32)°
x = 11.87
x ≈ 11.9°
6). By applying sine rule in the given triangle,
sin(54°) = ![\frac{\text{Opposite side}}{\text{Hypotenuse}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7BOpposite%20side%7D%7D%7B%5Ctext%7BHypotenuse%7D%7D)
sin(54°) = ![\frac{22}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B22%7D%7Bx%7D)
x = ![\frac{22}{\text{sin(54)}}](https://tex.z-dn.net/?f=%5Cfrac%7B22%7D%7B%5Ctext%7Bsin%2854%29%7D%7D)
x = 27.19°
x ≈ 27.2°