This is an example Newton's Third Law. All the kinectic energy from the moving car transferred the potential energy of the parked car. This potential is not much since the brakes are on (hopefully) and it's not in a non-moving position.
I believe the answer here is <span>C).seedless, seed (nonflowering), and seed (flowering).</span><span>
</span>
A dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
s = vt - 1 / 2 at²
s = Displacement
v = Final velocity
t = Time
a = Acceleration
s = 5 m
t = 1 s
a = 10 m / s²
5 = ( v * 1 ) - ( 1 / 2 * 10 * 1 * 1 )
5 = v - 5
v = 10 m / s
The equation used to solve the given problem is an equation of motion. In a free fall motion, usually air resistance is not considered for easier calculation. If air resistance is considered acceleration cannot be constant throughout the entire motion.
Therefore, a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
To know more about equation of motion
brainly.com/question/5955789
#SPJ1
Rhythmic gymnastics, trampoline gymnastics, javelin, diving, volleyball, and more due to the lack of gravity on the moon.
Answer:
66 rpm
Explanation:
The period of oscillation is given by
where T is time period of oscillation which is given as 0.35 s, k s spring constant and m is the mass of the object attached to the spring.
Also, net force is given by
Net force=
where
is the elongation, L is original length,
is the angular velocity
Substituting the equation of
into the above we obtain