Answer:
The best estimate of the depth of the well is 2.3 sec.
Explanation:
Given that,
Record time,





We need to find the best estimate of the depth of the well
According to record time,
We can write of the record time





Here, all time is nearest 2.3 sec.
So, we can say that the best estimate of the depth of the well is 2.3 sec.
Hence, The best estimate of the depth of the well is 2.3 sec.
Answer:
66w
Explanation:
p=w/t
p=660/10
p=66
prolly a bad explanation but hope it helps...
Velocity (unit:m/s) of the wave is given with the formula:
v=f∧,
where f is the frequency which tells us how many waves are passing a point per second (unit: Hz) and ∧ is the wavelength, which tells us the length of those waves in metres (unit:m)
f=1/T , where T is the period of the wave.
In our case: f=1/3
∧=v/f=24m/s/1/3=24*3=72m
Answer:
the intensity of the light after passing through the two polarizing filters is 4.11 units
Explanation:
Given the data in the question;
the intensity of an unpolarized light; I₀ = 25.0 units
when the unpolarized light passes through the first polarizer, its intensity reduces to half of its initial value;
⇒ I₁ = I₀/2 = 25/2 = 12.5 units
the angle between the transmission axes of two polarizers is;
∅ = 55° - 0° = 55°
The intensity of the light after passing through two polarizing filters will be;
I₂ = I₁cos²∅
we substitute
I₂ = 12.5 × cos²(55)
I₂ = 12.5 × 0.3289899
I₂ = 4.11 units
Therefore, the intensity of the light after passing through the two polarizing filters is 4.11 units
Answer:
The correct answer is D.
D:The surface of the coating allows light from the room to pass through but blocks the light from the screen.
Explanation:
Glare is produced on a computer screen when light from some external source reflects on the screen.
Anti-glare coating do not absorb light to reduce glare but they actually reduce glare by encouraging the light from the room to pass through the screen so that less light is reflected. Polarized lenses absorbs light to reduce glare, not anti-glare coating.