The motorized toy boat experiences a net force of 0 N between 4 s and 8 s.
The motorized toy boat moves at 8 m/s (u) at 4 s and at 8 m/s (v) at 8 s. We can calculate the acceleration (a) in that period using the following kinematic expression.

The object with a mass (m) of 2.0 kg experiences an acceleration of 0 m/s². We can calculate the net force (F) in that period using Newton's second law of motion.

The motorized toy boat experiences a net force of 0 N between 4 s and 8 s.
Learn more: brainly.com/question/13447525
To solve these problems first draw the free body diagram:
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.
1. the energy of the wave, 2.the type of medium. 3.the amplitude of the wave. 4.the type of wave
The potential energy of a 2-μc charge at that point in space is
joules.
Given,
V=400v, q=2-μc=2*
,
U(potential energy)=V*q=400*2*
=
joules.
<h3>Potential energy</h3>
The energy that an item retains due to its position in relation to other objects, internal tensions, electric charge, or other reasons is known as potential energy in physics. The gravitational potential energy of an object is based on its mass and the distance from the centre of mass of another object. Other common types of potential energy include the elastic potential energy of an extended spring and the electric potential energy of an electric charge in an electric field. The joule, denoted by the sign J, is the SI's definition of an energy unit.
The vectors that are described as gradients of a particular scalar function known as potential can be used to represent these forces, also known as conservative forces, at any location in space.
At a certain point in space there is a potential of 400 v. what is the potential energy of a 2-μc charge at that point in space? group of answer choices'
Learn more about potential energy here:
brainly.com/question/15764612
#SPJ4