Explanation:
We know that the larger the circle, the more large the diameter of the circle the more the quantity being studied.
We can clearly see that the South eastern coast of Australia has more number of people diagnosed with cancer.
The South western and the Northern part also records a sizable amount of skin cancer cases.
- In the middle part of the map where the circles are small, the number of people diagnosed with cancer is very low
- Other areas without the circle did not record any case of skin cancer.
learn more:
Charts brainly.com/question/12068498
#learnwithBrainly
Movement of water through a plasma membrane from a low to high solute concentration.
ATP synthesization - Simple and complex lipids or carbohydrates are used to produce ATP through redox reactions. After the hydrolysis of complex carbohydrates, glucose and fructose are formed and the triglycerides are metabolized to form glycerol and fatty acids. ATP is then synthesized by oxidative phosphorylation and photophosphorylation during the energy production with in the living organisms. ATP production usually takes place in the mitochondria of the cell. The important pathways by which ATP is generated are glycolysis, the citric acid cycle (or the Kreb’s cycle), and the electron transport chain (or the oxidative phosphorylation pathway). In these three cycles of cellular respiration adenosine diphosphate (ADP) is converted to ATP and energy is released from molecules.
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
In multicellular organisms, the shape of the cell helps determine its function. For example, red blood cells are donut-shaped to easily exchange oxygen and freely pass through narrow blood vessels while nerve cells are long so when connected to other nerve cells they can span long distances in the organism