Okay. There is a simple formula to go with this where:
p = mv
P: Momentum.
M: Mass.
V: Velocity
Sub the numbers in and solve for M.
10.0 = m(1.5)
10.0/1.5 = m
6.67 kg = m
Therefore the mass of the ball is 6.67kg.
The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)
Answer:

Explanation:
Work is the product of force and distance.

We know that 96 Joules of work were done and a 16 Newton force was applied to the object.
Substitute the values into the formula.

First, let's convert the units. This will make cancelling units easier later in the problem. 1 Joule (J) is equal to 1 Newton meter (N*m), so the work of 96 Joules equals 96 Newton meters.

Now, solve for distance by isolating the variable, d. It is being multiplied by 16 Newtons and the inverse of multiplication is division. Divide both sides of the equation by 16 N.


The units of Newtons cancel.


The object moved a distance of <u>6 meters.</u>
We have that valence electrons poses the three characteristics stated, as
Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons of atoms are used to form bonds.
Group 14 (carbon group) are identified by 4 valence electrons.
Option A,B,C
<h3>
Properties of Valence electrons</h3>
All elements in the same group or family have the same number of valence electrons: Yes, this is true as Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons are the only subatomic particles involved in forming bonds: Yes, Valence electrons of atoms are used to form bonds.
Carbon has 4 valence electrons because it is found in group 14:
True, Group 14 (carbon group) are identified by 4 valence electrons.
For more information on atoms visit
brainly.com/question/13981855