initial speed of the stuntman is given as

angle of inclination is given as

now the components of the velocity is given as


here it is given that the ramp on the far side of the canyon is 25 m lower than the ramp from which she will leave.
So the displacement in vertical direction is given as



by solving above equation we have

Now in the above interval of time the horizontal distance moved by it is given by


since the canyon width is 77 m which is less than the horizontal distance covered by the stuntman so here we can say that stuntman will cross the canyon.
The correct option will be
D. Time, initial velocity and final velocity
The Formula can be written as,
Acceleration=Final velocity-Initial Velocity/Time
Answer:
0.707m
Explanation:
from formula of range i.e R=Usin2Q/g
The magnetic field or force seems to be associated with the lineup of electrons withim the magnet
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Assuming that
the weight on this 72-kg skydiver would be
(points downwards.)
Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.
Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:
.
Apply Newton's Second Law of motion to find the acceleration of this skydiver:
.