Answer:
The molecule has a bent geometry
Explanation:
Let us look again at the principles of VSEPR theory. The shape of a molecule depends on the number of electron pairs that surround the valence shell of the central atom in the molecule.
Lone pairs distort the molecular geometry away from what is expected on the basis of VSEPR theory.
The molecule described in the question has the form AEX2. Two substituents and one lone pair form three electron domains around the central atom. The expected geometry is trigonal planar but the observed molecular geometry is bent because of the lone pairs present.
Answer:
i) The bond angle decreases due to the presence of lone pairs, which causes more repulsion on the bond pairs and as a result, the bond pairs tend to come closer. ii) The repulsion between electron pairs increases with an increase in electronegativity of the central atom and hence the bond angle increases.
Explanation:
Answer:
1.60.
Explanation:
- The no. of millimoles of HCl = MV = (0.15 M)(20.0 mL) = 3.0 mmol.
- The no. of millimoles of KOH = MV = (0.10 M)(20.0 mL) = 2.0 mmol.
<em>Since the no. of millimoles of HCl is larger than that of KOH. The solution is acidic.</em>
<em></em>
∴ M of remaining HCl [H⁺] remaining = (NV)HCl - (NV)KOH/V total = (3.0 mmol) - (2.0 mmol) / (40.0 mL) = 0.025 M.
∵ pH = - log[H⁺]
<em>∴ pH = - log[H⁺] </em>= - log(0.025) = <em>1.602 ≅ 1.60.</em>