Answer:
Iron has 5 unpaired electrons in Fe⁺³ state.
Explanation:
Iron having atomic number 26 has following electronic configuration in neutral state.
Fe = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁶
When Iron looses three electrons it attains +3 charge with following electronic configuration.
Fe⁺³ = 1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵
The five electrons in d-orbital exist in unpaired form as,
3(dz)¹, 3d(xz)¹, 3d(yz)¹, 3d(xy)¹, 3(dx²-y²)¹
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.