<em>Answer:</em>
<em>Chemical properties:</em>
Those properties which change the chemical nature of matter.
<em>Example:</em>
- Heat of combustion
- Enthalpy of formation
<em>Physical properties:</em>
Those properties which do not change the chemical nature of matter.
<em>Example</em>
<em>Differences between chemical and physical properties:</em>
Chemical properties Physical properties
1. Observed after the change bringing 1. Observed with out being
the change change
2. These changes the molecules 2. only change physical state
3. Chemical identity changes 3.Chemical identity not changes
4. Structure of material changes 4.Structure of material not change
5. Chemical reaction is needed 5. No need of Chemical reaction
6. depend on composition 6. Does not depend on composition
<u>Given:</u>
Change in internal energy = ΔU = -5084.1 kJ
Change in enthalpy = ΔH = -5074.3 kJ
<u>To determine:</u>
The work done, W
<u>Explanation:</u>
Based on the first law of thermodynamics,
ΔH = ΔU + PΔV
the work done by a gas is given as:
W = -PΔV
Therefore:
ΔH = ΔU - W
W = ΔU-ΔH = -5084.1 -(-5074.3) = -9.8 kJ
Ans: Work done is -9.8 kJ
Answer: The net change in the atoms is the conversion of a neutron to a proton, turning Carbon (6 protons) into Nitrogen (7 protons).
Explanation:
Carbon-14, generated from the atmosphere, has 6 protons and 8 neutrons. That's where the 14 comes from, called the mass number, is the sum of protons and neutrons (6+8=14).
Carbon-14 is radioactive and decays by beta decay. That means one of its neutrons spontaneously turns into a proton, an electron, and a neutrino, according to:

After that, the atom has 7 protons and 7 neutrons, maintaining its mass number but changing its atomic number from 6 to 7, turning into Nitrogen.
Correct me if I'm wrong, anyone who is more informed on this than I am, but wouldn't it be because of the magnetic fields and whatnot? The longer I think on it, the more I feel like I'm wrong, so don't take my word for it 100%