Answer:
Explained below
Explanation:
When we heat a liquid, what happens is that the molecules of the liquid will absorb heat and thus develop kinetic energy that will make them move faster.
Now, as the liquid begins to boil, bubbles of will be formed inside the liquid and then rises to the surface. Now, when the temperature of the reaches 100°C which is the boiling point of a liquid, the molecules at the top of the liquid begin to change to gaseous state and escape in form of vapour.
The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
Answer:
5
Explanation:
they are all significant All non-zero numbers ARE significant
This Process is called fertilization
The concentration after dilution is 1.4%.
We are aware that concentration and volume are related to each other by the formula -
=
, where we have initial concentration and volume on Left Hand Side and final concentration and volume on Right Hand Side.
Keep the values to calculate final concentration.
= (53.5 × 5.4)/205.0
Performing multiplication on Right and Side
= 288.9/205.0
Performing division on Right Hand Side
= 1.4%
Hence, the final concentration is 1.4%.
Learn more about concentration -
brainly.com/question/17206790
#SPJ4
The complete question is -
A 53.5 mL sample of an 5.4 % (m/v) KBr solution is diluted with water so that the final volume is 205.0 mL.
Calculate the final concentration and express your answer to two significant figures and include the appropriate units.