42 (1- 25/100) = 63/2 = 31.5 dollars
answer is $31.50
hope it helps
Answer:
tan(13)-tan(2)
Step-by-step explanation:
= Monthsarry namin ng bebe ko
First term ,a=4 , common difference =4-7=-3, n =50
sum of first 50terms= (50/2)[2×4+(50-1)(-3)]
=25×[8+49]×-3
=25×57×-3
=25× -171
= -42925
derivation of the formula for the sum of n terms
Progression, S
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)
S=n/2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n/2{a1+[a1+(n−1)d]}
S=n/2[2a1+(n−1)d]
<span>Prime numbers are the numbers that are bigger than one and cannot be divided evenly by any other number except 1 and itself. If a number can be divided evenly by any other number not counting itself and 1, it is not prime and is referred to as a composite number. Prime numbers are whole numbers that must be greater than 1. Zero and one are not considered prime numbers. Learn how to determine which numbers are prime.
</span>This was not copied from a website or someone else. This was from my last year report.
The amount to be invested today so as to have $12,500 in 12 years is $6,480.37.
The amount that would be in my account in 13 years is $44,707.37.
The amount I need to deposit now is $546.64.
<h3>How much should be invested today?</h3>
The amount to be invested today = future value / (1 + r)^nm
Where:
- r = interest rate = 5.5 / 365 = 0.015%
- m = number of compounding = 365
- n = number of years = 12
12500 / (1.00015)^(12 x 365) = $6,480.37
<h3>What is the future value of the account at the end of 13 years?</h3>
Future value = monthly deposits x annuity factor
Annuity factor = {[(1+r)^n] - 1} / r
Where:
- r = interest rate = 5.3 / 12 = 0.44%
- n = 13 x 12 = 156
200 x [{(1.0044^156) - 1} / 0.0044] = $44,707.37
<h3>What should be the monthly deposit?</h3>
Monthly deposit = future value / annuity factor
Annuity factor = {[(1+r)^n] - 1} / r
Where:
- r = 6.7 / 12 = 0.56%
- n = 2 x 12 = 24
$14,000 / [{(1.0056^24) - 1} / 0.0056] = $546.64
To learn more about annuities, please check: brainly.com/question/24108530
#SPJ1