TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
Both technicians are right, to be able to make a threaded joint you need to use the external thread on one part of the rod using the tap and die set, and on the other side of the rod you need to have an internal thread using the thread repair insert kit
The distance between slit and the screen is 1.214m.
To find the answer, we have to know about the width of the central maximum.
<h3>How to find the distance between slit and the screen?</h3>
- It is given that, wavelength 560 nm passes through a slit of width 0. 170 mm, and the width of the central maximum on a screen is 8. 00 mm.
- We have the expression for slit width w as,

where, d is the distance between slit and the screen, and a is the slit width.
- Thus, distance between slit and the screen is,

Thus, we can conclude that, the distance between slit and the screen is 1.214m.
Learn more about the width of the central maximum here:
brainly.com/question/13088191
#SPJ4
Answer:Explained below.
Explanation:
Uranus rings is made up of jet black, coal-like particles in small bands, making them difficult to perceive from Earth.This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of material is dismal, but it might be some organic compounds greatly darkened by the charged particle irradiation from the Uranian magnetosphere. Rings were discovered by using a infrared telescope throughout the occultation of a star as Uranus passed in front of it. The light from the star dimmed many times before it was obstructed by the disk of Uranus and subsequently, showing the presence of various distinct rings.
Answer:
21.59 m/s
Explanation:
recall that one of the equations of motions can be expressed as
v² = u² + 2as
where,
v = final velocity (we are asked to find this)
u = initial velocity = 0m/s (because it says that it starts from rest)
a = acceleration = 3.7m/s²
s = distance travelled = 63 m
simply substitute the known values above into the equation:
v² = u² + 2as
v² = 0² + 2(3.7)(63)
v² = 466.2
v = √466.2
v = 21.59 m/s