1) First of all, let's calculate the potential difference between the initial point (infinite) and the final point (d=0.529x10-10 m) of the electron.
This is given by:

Where E is the electric field generated by the proton, which is
where

is the Coulomb constant and

is the proton charge.
Replacing the electric field formula inside the integral, we obtain

2) Then, we can calculate the work done by the electric field to move the electron (charge

) through this

. The work is given by
Answer:
cerro azul
Explanation:
I reverse image searched and it popped up with a name.
Answer:HERE IS YOUR ANSWER
THE POINTS ARE
IF WE PUT THE OBJECT BETWEEN THE FOCUS
AND THE POLE
THEN THE IMAGE FORMED WILL be MAGNIFIED
If that’s not what you are looking for, try this one:
For concave mirror the virtual image is formed when the object is kept in between the pole and the focus.
Given here the "size of the image" is twice to that of the object.
Hence, it is consider that the magnification is +2.
So, the magnification value is positive and the image formed will be "virtual and erect". Thus, the object should be kept in between the "pole and the focus" in concave mirror."
Explanation:
Answer:
no where we all stay home
The answer is 6.
Add 4 then divide 2. You should have 18 after you do that, subtract 10 then multiply 20. You then have 6.